

Platform Technology Division

SARAP Overview Briefing

Mr. Gene A. Birocco
Chief, Platform Technology Division
23 October 2000

RWV TDA PAYOFFS, GOALS, & OBJECTIVES

RWSTD will Demo in FY01

RWV TDA PAYOFFS, GOALS, & OBJECTIVES

Technology Challenges For Reduced Weight

Structural Joining

DATABASE & VALIDATED FATIGUE LIFE CRACK GROWTH MODELS

Accurate Loads/Stress Analyses

Tailored Structures

Fiber Placement

Efficient Crashworthy Structure

RWV STRUCTURES TECHNOLOGY IMPACTS ON AIRFRAME STRUCTURAL EFFICIENCY

Technical Challenges to Reduced Cost

Simultaneous Fab/Assembly

Integrated Helicopter Design Tools

Application Object

Application Object

SERVERS

Application Object Database

Object

Virtual Prototyping

RWV Structures Technology Impacts On Airframe Manufacturing Labor

ROTARY WING STRUCTURES TECHNOLOGY EVOLUTION

MAJOR EFFORT: SURVIVABLE, AFFORDABLE, REPARABLE AIRFRAME PROGRAM (S A R A P)

Objective: Develop and demonstrate large airframe fuselage technology with reduction in weight and increased affordability to transition to FTR.

Goals

- 25% Weight Reduction
- 40% Increase Affordability
- 40% Reduction in development time
- Provide ballistic tolerance, crash safety

Improves Payload Capacity 28% Improves Range 54% Airframe Technology:

- Dynamically Tailored Smart Structure
- Crashworthy
- Ballistic Tolerant to AAA & MANPADS
- Pressurized
- Durable/Supportable

TECHNOLOGY BARRIERS RWV STRUCTURES

Technology Barriers – Airframes				
JTR Capability Needed	Current Technology	Technical Barrier	Technology Solution	
		Affordability		
Five man-hours / pound T1	11 man-hours / pound T1	Component Fabrication and Assembly	Process feedback and control Unitized structures	
On-condition maintenance / Field assessment and capability	Phased inspection / no repair methods	Damage Characterists	HUMS Damage tolerance criteria	
Rapid inspection / Common repair methods	Manual inspection / no repair methods	Depot Inspection and Repair	Deterministic NDE ?	
	+ / - 25%	Accurate Loads Prediction	Non-linear analysis methods	
		Dynamic Structural Tailoring		
Stability at high L/D	Stability at low L/D	• Wing	Design optimization	
Adaptive frequency response and attenuation	Single frequency optimization	• Fuselage	Adaptive structures	
Zero margin design	Critical path design	Structural Optimization	Fiber tailoring & orientation/ Design optimization	
	Daily / Phased inspection & repair	Durability / Structural Integrity	Integrated HUMS / SUMS	
High strain allowables	Reduced allowables / toughened resins / crack detection	Rugged Concepts and Materials	"Z" reinforcement	
Joint Structural Design philosophy and certiviation	Safe Life – Army Damage Tolerance – AF, Navy	Damage Tolerance / Safe Life Methodologies	Unified design and certification standards	
Crash energy system management	High weight fraction landing gears	Crashworthiness @ high Gross Weight	Adaptive landing gears Crashworthy fuselage design	
30mm tolerant	Fuel bladders (no requirement)* Redundant load paths	Hydrodynamic Ram (wet wing)* Tougher materials	Leverage fixed-wing technology / Textiles, Z-reinforcement	
Pressurized Fuselage*	None	Fuselage Sealing Methods	? / Leverage fixed-wing technology	

^{*} Configuration dependent

TECHNOLOGY RISK ASSESSMENT RWV STRUCTURES

	- ALIE - ALIE
L'	
	AMRDEC
	FORE CONTRA

Technology Solution	Risk Assessment
Process feedback and control	G
Unitized structures	3
HUMS	Y
Damage tolerance criteria	
Deterministic NDE	R
Non-linear analysis methods	Y
Design optimization	G
Adaptive structures	Y
Fiber tailoring & orientation/	
Design optimization	G
Integrated HUMS / SUMS	Y
"Z" reinforcement	G
Unified design and certification	R
standards	K
Adaptive landing gears	Y
Crashworthy fuselage design	1
Textiles, Z-reinforcement	Y
Leverage fixed-wing technology	Y

RWV STRUCTURES TECHNOLOGY ROADMAP

SARAP Key Component Technologies

Survivable, Affordable, Reparable Airframe Program (SARAP) w/o Competition

PRODUCTS:

- Configuration independent technology maturation
- Configuration dependent flying TD on legacy platform
- Validated virtual prototype

Tech transition to baseline legacy

Elestomeni

ManTech (CAI Phase III) - \$4M + \$4M cost share **Industry cost share (30%) RM&S** possibility

LEGACY FLEET BENEFITS:

- Low / No risk modernization of legacy platform
 - CH-47 or
 - CH-53 / UH-60 or
 - V-22 / MV-22

CHARACTERISTICS:

- Competitive source selection, single TD
- Hardware demonstrated in one of two fashions:
 - Non-flying subassemblies
 - Flying subassemblies on legacy testbed
- Both configuration specific and nonspecific demonstrations
- Scaleable virtual prototype validation
- TDA Phase III technology objectives

FTR BENEFITS:

- Risk mitigation of common FTR technical barriers
- Scaleable virtual prototype validated for rapid application to FTR ATD
- Contributes 25% of FTR leapahead capabilities

Survivable, Affordable, Reparable Airframe Program (SARAP)

Phase III TDA Structures Payoffs

AH-64 With 1994 Technology Airframe Payload Wt = 2073 lbs 795 nm

JTR with Efficiency-Tailored Structure

Payload = 15 tons

Improves Payload Capacity 28%

515 nm JTR with 1994 Technology Airframe

Payload = 15 to

Improves Range 54%